Two New Phenylpropanoid Derivatives from Codonopsis tangshen OLIV.

by Dan Song^a)^b)^c), Gui-Xin Chou^{*a})^c), Guo-Yue Zhong^b), and Zheng-Tao Wang^{*a})^c)

^a) Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, No. 1200 Cai Lun Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P. R. China
(phone: +86-21-51322507; fax: +86-21-51322519; e-mail: wangzht@hotmail.com)
^b) Chongqing Academy of Chinese Materia Medica, Chongqing 400065, P. R. China
^c) Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, 201203, P. R. China
(phone: +86-21-51322507, +86-21-50271706; fax: +86-21-51322519, +86-21-50271708; e-mail: wangzht@hotmail.com)

Two new 3-hydroxy-3-methylglutaric acid derived phenylpropanoid glucosides, tangshenoside V (1) and tangshenoside VI (2), were isolated from the roots of *Codonopsis tangshen* OLIV., along with the two known compounds tangshenoside I (3) and tangshenoside III (4). Their structures were elucidated by spectroscopic methods (IR and 1D- and 2D-NMR) and by mass spectrometry (HR-ESI-MS).

Introduction. – The roots of *Codonopsis tangshen* OLIV. (Dangshen in Chinese) is a very common traditional Chinese medicine, belonging to the family Campanulaceae. It is recorded in the Chinese Pharmacopoeia for the treatment of neurosis, hematopoietic diseases, gastric ulcer, and nephritis [1][2]. Dangshen was also administrated as a substitute for Asian ginseng, or as a tonic for immunoregulatory purposes [3][4]. Many compounds such as polyacetylenes, alkaloids, flavonoids, steroids, sesquiterpenes, triterpenoids, and polysaccharides have been isolated in the *Codonopsis* genus [5-9]. In previous works, four phenylpropanoid glucosides, tangshenoside I – IV, were isolated and identified from the roots of *C. tangshen* [6][7]. In the present paper, we describe the isolation and the structure elucidation of tangshenoside V (1) and tangshenoside VI (2), along with two derivatives previously isolated from this plant, tangshenosides I (3) and III (4).

Results and Discussion. – The air-dried and powdered roots were extracted with 70% EtOH to give the crude extract (10 kg). The total extract was suspended in H_2O and partitioned successively with petroleum ether, AcOEt, and BuOH. The BuOH fraction was separated by column chromatography over *D-101* macroporous resin, silica gel, and *Sephadex LH-20*, repeatedly, followed by *ODS* column chromatography; it afforded a series of phenylpropanoid derivatives, including two new compounds **1** and **2** and the two known ones **3** and **4**. The structures of the known compounds were confirmed as tangshenoside I (**3**) and tangshenoside III (**4**) by comparison of their physical and spectral data with the reported data [7][8].

Compound **1**, a colorless gum, showed a molecular formula $C_{21}H_{26}O_{12}$ as deduced from its positive-mode HR-ESI-MS (m/z 493.1334 ($C_{21}H_{26}NaO_{12}^+$)). The IR spectrum

^{© 2008} Verlag Helvetica Chimica Acta AG, Zürich

Glc = β -D-Glucopyranosyl

revealed the absorption bands of OH (3432 cm⁻¹) and CO (1706 cm⁻¹) groups. From the ¹H- and ¹³C-NMR (*Table*), HMQC, and HMBC (*Fig. 1*) data, the structure of **1** was elucidated as 3-[(6-*O*-(*p*-coumaroyl)- β -D-glucopyranosyl)oxy]-3-methylglutaric acid, named tangshenoside V. The configuration at the 3-hydroxy-3-methylglutaric acid derived moiety was not determined. However, it can be proposed as (3*S*), since all compounds containing such a residue reported until now in the family Campanulaceae possess this configuration [6–8].

Fig. 1. Selected HMBC (H \rightarrow C) of 1

1) Arbitrary atom numbering; for systematic names, see Exper. Part.

	1		2	
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$
C(1)		174.6		174.6
$CH_{2}(2)$	2.80 - 2.92 (m)	44.5	2.80 - 2.92 (m)	44.5
C(3)		77.8		77.9
$CH_2(4)$	2.80 - 2.92 (m)	44.5	2.80 - 2.92 (m)	44.7
C(5)		174.7		172.6
Me(6)	1.49(s)	25.0	1.50(s)	25.4
C(1')		127.5		127.5
H-C(2')	7.42 (d, J = 8.6)	131.4	7.39(d, J = 8.2)	131.5
H-C(3')	6.78(d, J = 8.6)	117.1	6.78(d, J = 8.2)	117.1
C(4')		161.5		161.5
H-C(5')	6.78 (d, J = 8.6)	117.1	6.78 (d, J = 8.2)	117.1
H-C(6')	7.42(d, J = 8.6)	131.4	7.39(d, J = 8.2)	131.5
H-C(7')	7.62 (d, J = 15.9)	147.0	7.60(d, J = 15.9)	147.0
H-C(8')	6.33 (d, J = 15.9)	115.3	6.29(d, J = 15.9)	115.4
C(9')		169.3		169.3
H - C(1'')	4.65 (d, J = 7.7)	98.6	4.65(d, J = 7.7)	98.7
H-C(2'')	3.22(t, J = 8.9)	75.3	3.22 - 3.49 (m)	75.4
H-C(3'')	3.42(t, J = 8.9)	78.2	3.22 - 3.49(m)	78.1
H-C(4'')	3.30 - 3.34(m)	72.1	3.22 - 3.49(m)	72.2
H-C(5'')	3.53 - 3.56(m)	75.5	3.22 - 3.49(m)	75.5
CH ₂ (6")	4.48 (dd, J = 11.8, 2.0),	65.1	4.48 (dd, J = 11.4, 2.0),	65.1
	4.28 (dd, J = 11.8, 6.8)		4.28 (dd, J = 11.4, 6.8)	
C(1''')				134.9
H-C(2''')			6.71 (s)	106.3
C(3''')				154.6
C(4''')				136.6
C(5''')				154.6
H-C(6''')			6.71 (s)	106.3
MeO-C(3''')			3.83 (s)	57.4
MeO-C(5''')			3.83 (s)	57.4
H-C(7''')			6.56 (d, J = 16.0)	135.2
H-C(8''')			6.23 (<i>ddd</i> , <i>J</i> =16.0, 6.5, 6.5)	124.6
CH ₂ (9''')			4.65 (d, J = 6.5)	66.3
H-C(1'''')			4.86 (d, J = 7.4)	105.7
H-C(2"")			3.22-3.49 (<i>m</i>)	76.0
H-C(3"")			3.22-3.49 (<i>m</i>)	78.6
H-C(4"")			3.22-3.49 (<i>m</i>)	71.6
H-C(5'''')			3.22–3.49 (<i>m</i>)	78.2
CH ₂ (6"")			3.79 (dd, J = 12.0, 2.0),	62.9
			3.67 (dd, J = 12.0, 4.9)	

Table. ¹*H*- and ¹³*C*-*NMR Data* (500 and 125 MHz, resp.; CD₃OD) of **1** and **2**¹). δ in ppm, *J* in Hz.

In the ¹H- and ¹³C-NMR spectra data of **1** (*Table*), three structural moieties were clearly observed. Two *d* at δ (H) 6.78 (*d*, *J* = 8.6, 2 H) and 7.42 (*d*, *J* = 8.6, 2 H), two olefinic H-atoms at δ (H) 6.33 (*d*, *J* = 15.9, 1 H) and 7.62 (*d*, *J* = 15.9, 1 H), together with four aromatic C-atoms, two olefinic C-atoms as well as one carboxy C-atom indicated the presence of a *p*-coumaroyl (= 3-(4-hydroxyphenyl)-1-oxoprop-2-en-1-yl) group. A Me *s* at δ (H) 1.49 (*s*, Me(6)), and the four H-atoms at δ (H) 2.80–2.92 (*m*, CH₂(2), CH₂(4)) corresponding to two CH₂ groups, together with two CO signals at δ (C) 174.6 (C(1)) and 174.7 (C(5)) demonstrated the presence of a 3-hydroxy-3-methylglutaric acid moiety [5]. The anomeric signal at δ (H) 4.65 (d, J = 7.7, 1 H), the corresponding ¹³C-NMR signal at δ (C) 98.6, together with the signals in the region δ (H) 3.22–4.48 and relevant ¹³C-NMR resonances, indicated the presence of a β -glucopyranosyl (Glc) unit. Interpretation of the HMQC and HMBC data of **1** (*Fig. 1*) revealed the substitution pattern and allowed us to assign all the ¹H- and ¹³C-NMR signals. The *p*-coumaroyloxy group was located at C(6'') of the Glc moiety because of the downfield shift observed for this H-atom in the ¹H-NMR spectrum, as corroborated by the HMBC cross-peaks CH₂(6'')/C(9'). The attachment of the β -glucopyranose moiety at C(3) was established by the HMBC cross-peak H–C(1'')/C(3).

Compound **2**, a colorless gum, had a molecular formula $C_{38}H_{48}O_{20}$ as shown by its positive-mode HR-ESI-MS (m/z 847.26298 ($C_{38}H_{48}NaO_{20}^+$)). The IR spectrum revealed the absorption bands of OH (3432 cm⁻¹) and CO (1706 cm⁻¹) groups. The UV spectrum of **2** showed absorptions at λ_{max} (MeOH) 227 and 277 nm, which suggested that there was an aromatic system conjugated with an unsaturated side chain. Comparison of the ¹H- and ¹³C-NMR spectra of **2** (*Table*) with those of **1** indicated that **2** is a monoesterified derivative of **1**. From these and the HMBC data (*Fig. 2*), the structure of **2** was elucidated as 3'-O-[6-O-(p-coumaroy1)- β -D-glucopyranosyl]ussurienoside, named tangshenoside VI.

Fig. 2. Selected HMBC $(H \rightarrow C)$ of 2

The presence of a (2*E*)-prop-2-en-1-ol derived moiety was indicated by a pair of olefinic signals at $\delta(H) 6.56 (d, J = 16.0, 1 H)$ and 6.23 (ddd, J = 16.0, 6.5, 6.5, 1 H), and an oxygenated-CH₂ d at $\delta(H) 4.65 (d, J = 6.5, 2 H)$. Furthermore, two aromatic H-atoms at $\delta(H) 6.71 (s, 2 H)$ were attributed to a 1,3,4,5-tetrasubstituted phenyl ring. A six H-atoms s at $\delta(H) 3.83 (s, 6 H)$ was characteristic of the two MeO groups symmetrically situated at a benzene ring. One d with a large coupling constant due to an anomeric H-atom at $\delta(H) 4.86 (d, J = 7.4, 1 H)$ in the ¹H-NMR spectrum and one anomeric C-atom at $\delta(C) 105.7$ in the ¹³C-NMR spectrum revealed that **2** possesses an additional β -linked sugar unit. The spectral data of the remaining resonances were almost the same as those of **1** [10][11]. The above data suggested that **2** is a 'tangshenoside-type' phenylpropanoid derivative [6]. The esterification of the 3-hydroxy-3-methyl-glutaric acid moiety was confirmed by the downfield shifted CH₂O d at $\delta(H) 4.65 (CH₂(9'''))$, and further supported by a HMBC cross-peak CH₂(9''')/C(5) (*Fig.* 2). The attachment of the β -glucopyranosyl moiety at C(4''') was established by an HMBC cross-peak H-C(1'''')/C(4''').

The project was supported by the National Science and Technology Supporting Item (2006BAI06A11-09).

Experimental Part

General. Column chromatography (CC): silica gel (SiO₂; 100–200 or 200–300 mesh; Qingdao Ocean Chemical Co., Ltd, Qingdao, China), ODS (50 µm; YMC, Japan), and Sephadex LH-20 (Amersham Biosciences, GE Health Care). Thin-layer chromatography (TLC): silica gel GF_{254} plates (Qingdao Ocean Chemical Co., Ltd, Qingdao, China). Optical rotation: Perkin-Elmer 341 polarimeter; in MeOH at 22°. UV Spectra: Shimadzu UV-240A apparatus; λ_{max} (log ε) in nm. IR Spectra: Nicolet FT-IR-380 spectrometer; KBr pellets; in cm⁻¹. ¹H- (500 MHz), ¹³C- (125 MHz), and 2D-NMR (HMBC, HSQC) Spectra: Bruker AV-500 spectrometer; in CD₃OD; chemical shifts δ in ppm and coupling constants J in Hz. ESI-MS and HR-ESI-MS: LCQ-Deca-XP^{plus} (Thermo Finnigan) and Finnigan MAT-95 spectrometer, resp.; in m/z.

Plant Material. The roots of *C. tangshen* were collected in Chongqing, China, in January 2006, and identified by Prof. *Rui Peng* (Chongqing Academy of Chinese Materia Medica). A voucher (No. 06-01-28) specimen was deposited with the Herbarium of Chongqing Academy of Chinese Materia Medica.

Extraction and Separation. The air-dried, finely sliced roots of *C. tangshen* (25 kg) were extracted with 70% EtOH (3×120 l) under reflux for 2.0 h. After removal of the EtOH by evaporation, the resulting residue (7.5 kg) was suspended in H₂O (8 l) and then partitioned successively with petroleum ether (1×4 l, 2×3 l), AcOEt (1×4 l, 2×3 l), and BuOH (1×4 l, 2×3 l). The BuOH fraction (1.5 kg) was dissolved in H₂O, the soln. filtered, and the filtrate purified with the aid of a *D-101* macroporous resin column (20×80 cm), eluting successively with H₂O, 30%, 50%, and 95% (*v*/*v*) EtOH: *Fractions 1–4. Fr. 2* (170 g) was firstly separated by CC (*ODS*, MeOH/H₂O 1:9 \rightarrow 4:6, then 100:0): *Fr. 2a–Fr. 2e. Fr. 2a* was subjected to CC (*ODS*, MeOH/H₂O 2:8): **3** (30 mg). *Fr. 2b* was submitted to repeated CC (*Sephadex LH-20*, MeOH/H₂O 1:1; then *RP-18* gel, MeOH/H₂O 3:7): **1** (60 mg) and **4** (15 mg). *Fr. 3* (50 g) was subjected to CC (SiO₂, gradient CHCl₃/MeOH 80:1 \rightarrow 1:1): *Fr. 3a–Fr. 3j. Fr. 3h* was subjected to CC (silica gel, CHCl₃/MeOH 10:1 \rightarrow 0:1); then *RP-18* gel (MeOH/H₂O 4:6): **2** (22 mg).

3-{[6-O-[(2E)-3-(4-Hydroxyphenyl)-1-oxoprop-2-en-1-yl]-β-D-glucopyranosyl]oxy]-3-methylglutaric Acid (= Tangshenoside V; **1**): Colorless gum. $[a]_D^{22} = -3.40$ (c = 0.65, MeOH). UV (MeOH): 311 (4.32). IR (KBr): 3432, 2924, 1706, 1634, 1604, 1174, 835. ¹H- and ¹³C-NMR: Table. HR-ESI-MS (pos.): 493.1334 ($[M + Na]^+$; calc. 493.1316).

 $3-\{[6-O-[(2E)-3-(4-Hydroxyphenyl)-1-oxoprop-2-en-1-yl]-\beta-D-glucopyranosyl]oxy]-3-methylgluta$ $ric Acid (2E)-3-[4-(\beta-D-Glucopyranosyloxy)-3,5-dimethoxyphenyl]prop-2-en-1-yl Ester (= Tangshe$ noside VI;**2** $): Colorless gum. [<math>\alpha$]_D² = -10.2 (c = 0.10, MeOH). UV (MeOH): 227 (4.68), 277 (4.44), 309 (4.32). IR (KBr): 3432, 2927, 1706, 1633, 1604, 1172, 1126, 1072, 833. ¹H- and ¹³C-NMR: Table. HR-ESI-MS (pos.): 847.2629 ([M + Na]⁺; calc. 847.2631).

REFERENCES

- Chinese Pharmacopoeia Commission, 'China Pharmacopoeia', Vol. 1, Chemical Industry Press, Beijing, 2005, p. 199.
- [2] Z.-T. Wang, Q. Du, G.-J. Xu, R.-J. Wang, D.-Z. Fu, T.-B. Ng, Gen. Pharmacol. 1997, 28, 469.
- [3] Y.-P. Zhu, 'Chinese Materia Medica: Chemistry, Pharmacology, and Applications', Harwood Academic Publishers, Amsterdam, 1998, p. 158.
- [4] Z. T. Wang, T. B. Ng, H. W. Yeung, G. J. Xu, Gen. Pharmacol. 1996, 27, 1347.
- [5] Q. He, E.-Y. Zhu, Z.-T. Wang, L.-S. Xu, Z.-B. Hu, J. Chin. Pharm. Sci. 2004, 13, 212.
- [6] K. Mizutani, M. Yuda, O. Tanaka, Y.-I. Saruwatari, T. Fuwa, M.-R. Jia, Y.-K. Ling, X.-F. Pu, Chem. Pharm. Bull. 1988, 36, 2689.
- [7] K. Mizutani, M. Yuda, O. Tanaka, Y.-I. Saruwatari, M.-R. Jia, Y.-K. Ling, X.-F. Pu, Chem. Pharm. Bull. 1988, 36, 2726.
- [8] M. Yuda, K. Ohtani, K. Mizutani, R. Kasai, O. Tanaka, M.-R. Jia, Y.-R. Ling, X.-F. Pu, Y.-I. Saruwatari, *Phytochemistry* 1990, 29, 1989.
- [9] Z.-T. Wang, G.-J. Xu, M. Hattori, T. Namba, Shoyakugaku Zasshi 1988, 42, 339.
- [10] M. Cuendet, O. Potterat, K. Hostettmann, Phytochemistry 2001, 56, 631.
- [11] W. G. Ma, R. X. Tan, N. Fuzzati, Q. S. Li, J.-L. Wolfender, K. Hostettmann, Phytochemistry 1997, 45, 411.

Received March 21, 2008